Boost network speed beyond 1Gbps without expensive cable upgrades? You can! Check out the whys and hows of the new 802.3bz (NBASE-T) Ethernet standard.
With the power of a good API it's easy to make a dashboard showing live traffic of ByteBlower.
From basic and in-depth courses on WiFi, DOCSIS and cable networks to custom workshops: explore our new portfolio of lectures by expert engineers.
Have you ever tried to plug an optic SFP+ transceiver into an SFP+ port to discover that the connection didn’t work, i.e. traffic was very slow or there was no data transmission at all? Did you manage to diagnose the problem and find a resolution? There are several possible reasons for failure. We’ve listed the five most common ones.
The first step after installing a new network is often to determine its maximum throughput. At the DOCSIS 3.1 interop that we organized a couple of months ago, several participants stayed after to get the highest throughput on their modems. When new lab equipment is delivered to a customer, it's much the same. In this post, I want to give a bit of back story on the throughput test that we've added to the 2.7.0 ByteBlower release. You'll also get a sneak peek at what is coming in the next release.
From an engineering point of view, DOCSIS 3.1 protocol messages are pretty mind-blowing. They travel almost at the speed of light through your coaxial cable – all to support your online life. Imagine pausing time and taking a peek at the conversation between the cable modem (CM) and the cable modem termination system (CMTS). Wait, we can! Let’s have a look using the XRA-31 real-time RF analyzer that we will be launching soon.